Success with GPS

Angie Schmidt, IDFG

- Geographic Coordinate Systems and Projections.
- Decimal Degrees and Degrees Minutes Seconds
- DNR Garmin for GPS waypoint management
- GPS tips
- Submitting coordinate information to IFWIS

Geographic Coordinate Systems

- Prime Meridian
- Angular unit of measure
- Datum

Units of Measure: Latitude/Longitude

- Prime Meridian, Greenwich
- Latitude lines are parallel to the equator
 - There are 180 lines of latitude.
 90 above the equator and 90 below.
- Longitude lines converge at the poles
 - There are 360 lines of longitude. 180 west of the prime meridian and 180 east.

Datum: The Earth is NOT ROUND!

- Datums take into account the shape of the earth and provide a frame of reference for measuring on the earth surface.
- Here are a few Nad27
 Nad83, WGS84

The earth is an ellipsoid...There are many calculations to describe the earth's shape.

e.g. Clarke 1866, GRS 1980

Datum: NAD 1927

- Origin of datum is Meades Ranch Kansas
- Based on ground measurements and spheroid Clarke 1866.
- Error increases as you move away from the "Ranch"

Datum: NAD 1983

- Based on both ground and satellite measurements, GRS80
- Coordinate origin is the earth's center of mass
- Much more accurate than Nad1927

WGS 84

- Utilized by GPS.
- Coordinate origin is Earth's center of mass
- Not significantly different than NAD83 for the data we capture.

Datums are important!

Dilemma!

- Longitude lines converge towards North Idaho
- Latitude lines are parallel, but have differing circumferences.
- Idaho looks squished when displayed on paper!
- Lat/Long is not projected information.
- A projection is needed!

Distortion

- All map projections distort:
 - Shapes of features
 - Distance
 - Area
 - Direction
- Projections focus on minimizing one or more distortions.

Projection Types...many

- Conformal preserve angles.
 - Mercator. Idaho Transverse Mercator, or Universal Transverse Mercator (UTM).
- Equal-area preserve area.
 - Albers.
- The list goes on and on... snore... yawn...

It is important to let others know how your data is projected (UTM Zone 11, NAD83)

Lat/Long – Dec. Degrees

Lat/Long can be displayed in different ways

• Degrees, Minutes, Seconds

-115°, 52′, 25″, 45°, 11′, 34″

Degrees + Minutes/60 + Seconds/3600 = Decimal Degrees

-115 + 52/60 + 25/3600, 45 + 11/60 + 34/3600

Decimal Degrees

-115.873611, 45.192778

Degrees Decimal Minutes

-115° 52.4166′, 45° 11.5666′

Accuracy – how many decimals?

1 degree of latitude	=	1.000000 degree	or	110,874.40 meters
1/10 of a degree of latitude	=	0.100000 degree	or	11,087.44 meters
1/100 of a degree of latitude	-	0.010000 degree	or	1,108.74 meters
1/1000 of a degree of latitude	=	0.001000 degree	or	110.87 meters
1/10000 of a degree of latitude	=	0.000100 degree	or	11.09 meters
1/100000 of a degree of latitude	=	0.000010 degree	or	1.11 meters
1/1000000 of a degree of latitude	-	0.000001 degree	or	.11 meters

1 degree of longitude	=	1.000000 degree	or	95,506 meters
1/10 of a degree of longitude	=	0.100000 degree	or	9,550.6 meters
1/100 of a degree of longitude	=	0.010000 degree	ar	955.06 meters
1/1000 of a degree of longitude	=	0.001000 degree	ar	95.506 meters
1/10000 of a degree of longitude	=	0.000100 degree	ar	9.551 meters
1/100000 of a degree of longitude	-	0.000010 degree	ar	.955 meters
1/1000000 of a degree of longitude	-	0.000001 degree	ar	.096 meters

These numbers are relevant for Texas. Idaho's will differ since we are further from the equator – aim for a minimum of 4 decimals.

DNR Garmin

- Application for managing GPS data
- Free from Minnesota DNR
- "Google" DNR GARMIN

- Can upload or download to your GPS
- Contains Lat/Long and projected fields
- Option to save as a shapefile
- Don't need GIS software to run

DNR Garmin

- Save to a variety of formats
- ArcView Shapefile, unprojected works best

(Remember a shapefile consists of more than one file)

- .shp, .dbf, .shx, .prj, .shp.xml
- · Don't edit the .dbf

Tips for Capturing GPS Locations with a Garmin

- Face South
- Place the GPS at the location for a minute or more
- Move out of the way, get a clear view of the sky
- Don't rely on the altimeter

Coordinate Submission to IFWIS

- Send Decimal Degrees, WGS84
 - Accuracy! The more the coordinates are converted the more error is induced.
- If a shapefile is sent make sure it has a projection file (.prj) and metadata (.xml)
- Source information is best. If you captured a point, send a point. If a polygon better describes the plant, send a polygon.

Review

- Geographic, Decimal Degrees These coordinates are not projected.
- Decimal degrees- a decimal format of Lat/Long, more decimals for accuracy.
- Projection manages distortion.
- Datum describes the shape of the earth. Is needed when providing any coordinate information.
- DNR Garmin Helpful for managing GPS data.
- Send IFWIS source data Geographic WGS84

